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Taxonomy of biological memory
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Why motor Learning?

Our life is a continuum of motor learning

Learning new motor skills

Regaining lost motor skills



Two types of motor learning

1. Motor adaptation 2. Motor skill learning

(1) visuomotor adaptation (kinematics)

1-2-1-4-2-3-4-1-3-2-4-3-...
(1 2 3 4)

Visual
stimuli

Advantage of motor learning research:
v' Easy to quantify the amount of learning
v' Possible to measure progress of learning

v' Theoretical & computational approaches with models are encouraged
But, within-subject experiment design is difficult



Effects of task schedule on motor learning

Interference between tasks
- Contextual interference effect

Time decay of memory
- Spacing effect
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Learning

A computational model of motor
learning & memory
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In search of optimal learning schedule
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Neural substrates of memories
with multiple time scales (modeling)
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Neural substrates of memories
with multiple time scales (fMRI results)

T-value: 3.55 B 110.00

Regression results
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Four principal networks with different time scales

Applying the state-of-the-art sparse singular value decomposition method
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Multi-voxel pattern classification with machine
learning techniques

Classification of Task 1 vs. Task 2
- Linear Support Vector Machine, averaged classification accuracy reported
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Non-invasive neuromodulation :
Transcranial Magnetic Stimulation (TMS)
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Targeted TMS selectively activate hippocampal-
cortical memory network
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Current & Future
Research



Multimodal approach to learning & memory
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Setup of the laboratory

Visuomotor experiment setup TMS with Neuronavigation system

|
|
|
|
|
|
|
|
I
I
<
|
|
|
!
L
|
|
|
|
)
|



Our team members

Computational Learning & Memory Neuroscience Lab

Home Research Publications Personnel News Contact Us clmnlab@gmail.com  +821046875322 f in

Computational Learning &
Memory Neuroscience Lab

sungshln K|m Kyusung le Our laboratory investigates on neural mechanisms underlying learning & memory. We take a
combined approach of computational modeling, behavioral experiment, neuroimaging, and
Prl NCi pal Investlgator POStdOC noninvasive neuromodaulation such as tDCS and TMS. We investigate how functional brain network

evolves as a process of learning using computational methods and how it could be modulated by
non-invasive brain stimulation. Building on scientific findings, we may develop clinical protocols for
neurorehabilitation for patients with stroke and Alzheimer's disease. Our laboratory is part of center
for neuroscience imaging research in Institute of Basic Sciences (IBS) funded by Korean government.
To learn more about our research, please see our Publications and Contact Us.
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Topic 1: Neural correlates of reward-based motor
skill learning in high-dimensional space

The first fMRI experiment of learning a new motor skill from scratch




Preliminary behavioral and fMRI results
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First fMRI demonstration in high-dimensional
Learning motor skill from scratch

We found strong fMRI activities

in bilateral putamen modulating

reward during motor skill learning




Topic 2: TMS modulation of motor learning & memory
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