스터디 일정 & 커리큘럼 & 발표자료
진행 중
- 2015년 12월 14일~ 2016년 2월 29일
- 코세라 regression 은 발표자료 링크가 따로 없다면, 해당 강좌의 자료를 사용함
회차 | 일시 | 내용 | 발표자 | 발표자료 |
---|---|---|---|---|
1 | 12/14 | (파이썬) 1.Machine learning basics | 권준호 | 발표자료 |
(파이썬) 2.Classifying with k-Nearest Neighbors | 권준호 | 발표자료 | ||
(코세라) 01 Part 1 of 4 Introduction to Regression | 김성근 | |||
(코세라) 01 Part 2 of 4 Basic Least Squares | 김성근 | |||
(코세라) 01 Part 3 of 4 Technical Details | 김성근 | |||
(코세라) 01 Part 4 of 4 Introductory Data Example | 김성근 | |||
(코세라) 02 Part 1 of 1 Notation and Background | 박상진 | |||
2 | 12/21 | (파이썬) 3. Splitting datasets one feature at a time: decision trees | 신성진 | 발표자료 |
(파이썬) 추가발표자료1 | 신성진 | 발표자료 | ||
(파이썬) 추가발표자료2 | 신성진 | 발표자료 | ||
(코세라) 03 Part 1 of 3 Linear Least Squares | 김성근 | |||
(코세라) 03 Part 2 of 3 Linear Least Squares Coding Example | 김성근 | |||
(코세라) 03 Part 3 of 3 Technical Details (Skip if you'd like) | 김성근 | |||
(코세라) 04 Part 1 of 1 Regression to the Mean | 김성근 | |||
3 | 1/4 | (파이썬) 4.Classifying with probability theory: nai:ve Bayes | 조정호 | |
(코세라) 05 Part 1 of 3 Statistical Linear Regression Models | 김성근 | |||
(코세라) 05 Part 2 of 3 Interpreting Coefficients | 김성근 | |||
(코세라) 05 Part 3 of 3 Linear Regression for Prediction | 김성근 | |||
(코세라) 01_06 Part 1 of 3 Residuals | 서기호 | |||
(코세라) 01_06 Part 2 of 3 Residuals, Coding Example | 서기호 | |||
(코세라) 01_06 Part 3 of 3 Residual Variance | 서기호 | |||
4 | 1/11 | (파이썬) 5. Logistic regression | ||
(파이썬) 6. Support vector machines | ||||
(코세라) 01_07 Part 1 of 3 Inference in Regression | ||||
(코세라) 01_07 Part 2 of 3 Coding Example | ||||
(코세라) 01_07 Part 3 of 3 Prediction | ||||
5 | 1/18 | (파이썬) 7. Improving classification with the AdaBoost | ||
(코세라) 02_01 Part 1 of 3 Multivariable Regression | ||||
(코세라) 02_01 Part 2 of 3 Multivariable Regression | ||||
(코세라) 02_01 Part 3 of 3 Multivariable Regression Continued | ||||
(코세라) 02 02 Part 1 of 4 Multivariable Regression Examples | ||||
(코세라) 02 02 Part 2 of 4 Multivariable Regression Examples | ||||
(코세라) 02 02 Part 3 of 4 Multivariable Regression Examples | ||||
(코세라) 02 02 Part 4 of 4 Multivariable Regression Examples | ||||
(코세라) 02 03 Part 1 of 1 Adjustment Examples | ||||
6 | 1/25 | (파이썬) 8. Predicting numeric values: regression | ||
(파이썬) 9. Tree-based regression | ||||
(코세라) 02 04 Part 1 of 3 Residuals and Diagnostics | ||||
(코세라) 02 04 Part 2 of 3 Residuals and Diagnostics | ||||
(코세라) 02 04 Part 3 of 3 Residuals and Diagnostics | ||||
(코세라) 02 05 Part 1 of 3 Model Selection | ||||
(코세라) 02 05 Part 2 of 3 Model Selection | ||||
(코세라) 02 05 Part 3 of 3 Model Selection | ||||
7 | 2/1 | (파이썬) 10. Grouping unlabeled items using k-means clustering | ||
(파이썬) 11. Association analysis with the Apriori algorithm | ||||
(코세라) 03 01 Part 1 of 1 GLMs | ||||
(코세라) 03 02 Part 1 of 3 Logistic Regression | ||||
(코세라) 03 02 Part 2 of 3 Logistic Regression | ||||
(코세라) 03 02 Part 3 of 3 Logistic Regression | ||||
8 | 2/8 | (파이썬) 12. Efficiently finding frequent itemsets with FP-growth | ||
(파이썬) 14.SimplifYing data with the singular value decomposition | ||||
(코세라) 03 03 Part 1 of 2 Poisson Regression | ||||
(코세라) 03 03 Part 1 of 2 Poisson Regression | ||||
(코세라) 03 04 Part 1 of 1 Hodgepodge | ||||
9 | 2/15 | (파이썬) 13. Using principal component analysis to simplifY data | ||
(파이썬) SimplifYing data with the singular value decomposition | ||||
(파이썬) 15. Big data and MapReduce15 • Big data and MapReduce |
Written on January 1, 2016